SEO Texas, Web Development, Website Designing, SEM, Internet Marketing Killeen, Central Texas
SEO, Networking, Electronic Medical Records, E - Discovery, Litigation Support, IT Consultancy
Centextech
NAVIGATION - SEARCH

What Is Cache Poisoning?

Cache poisoning is also known as DNS cache poisoning. DNS or Domain Name System is a system that translates man-readable internet addresses into machine language numeric addresses. These numeric addresses are known as IP addresses. 

When a user tries to access a website via his browser, the browser forwards the request to the DNS server. The DNS then looks up the corresponding IP address and reverts to the request. The browser receives the IP address and uses it to load the website or domain requested by the user. 

DNS remembers the requests and stores the requested IP addresses in its memory. It helps the server reduce the revert time if the same domain request is received in the future.

This system nullifies the need to remember complex IP addresses associated with a webpage. Humans can remember the domain name, and DNS does the translation for the computer. However, the system has some loopholes that allow the hackers to carry out Cache Poisoning attacks.

What is Cache poisoning? 

DNS Cache poisoning refers to adding an incorrect entry to the DNS Cache. Here is the most common process followed by hackers for cache poisoning.

  • A browser submits a requester to the DNS resolver
  • Hackers build a dupe DNS nameserver that matches the authentic domain 
  • When the DNS resolver contacts the nameserver, hackers respond to the request via a fake nameserver
  • The DNS resolver receives this response and forwards it to the requesting browser
  • The fake response is stored in the DNS cache for future reference 
  • Every time a user requests for this domain, he is redirected to the incorrect domain stored in cache memory

The success of this type of cache poisoning is that DNS uses UDP (User Datagram Protocol) rather than TCP (Transmission Control Protocol). UDP does not verify the identity of the parties involved in the conversation. Hackers can easily alter the heading of UDP requests and respond to the request under pretend of a trusted DNS server. 

There are several vulnerabilities that hackers can exploit for implementing a DNS cache poisoning attack. Some of these vulnerabilities are:

  • Lack of identity verification and validation
  • Recursive DNS server vulnerability (forged information spreads from one DNS server to another)
  • Unencrypted DNS protocol

Cyber Security Risks Imposed by DNS Cache Poisoning:

DNS cache poisoning redirects a user to a fake and possibly malicious website. It may result in multiple cyber security risks.

  • Data theft
  • Malware infection
  • Delaying security updates
  • Censorship

Preventing DNS Cache Poisoning:

Once a forged entry is stored in DNS cache memory, it stays there until its Time To Live (TTL) expires. In the meantime, cache poisoning can spread to other DNS servers. So, it is required to delete the forged entry to prevent the DNS server from redirecting requests to the fake website.

Users can implement some measures to protect their server from cache poisoning attacks:

  • Business organizations should hire an IT professional to configure DNS servers rather than relying on relationships with other DNS servers. It will prevent hackers from using their DNS server to corrupt or influence an organization’s server.
  • Configure DNS server to run permitted services only. It limits the DNS server from running additional services not required by the organization. Limited exposure reduces the chances of an encounter with cache poisoning attacks.
  • Make use of an SSL/TLS certificate that binds the company’s details to a cryptographic key. It activates the HTTPS protocol to secure and encrypt the connection between the browser and your web server.

Centex Technologies provides cyber-security services & IT consultation to help businesses ward off cyber-attacks. To know more, contact Centex Technologies at Killeen (254) 213 - 4740, Dallas (972) 375 - 9654, Atlanta (404) 994 - 5074, and Austin (512) 956 – 5454.

Be the first to rate this post

  • Currently .0/5 Stars.
  • 1
  • 2
  • 3
  • 4
  • 5

Understanding & Implementing Cybersecurity Compliances

What do you mean by IT and Cybersecurity compliance?

Cybersecurity Compliance entails adhering to numerous cybersecurity measures that are usually implemented by a regulatory authority, government, or industry association. They try to safeguard data confidentiality, integrity, and availability. Compliance standards and frameworks differ by business and sector.

How does implementing & complying with various cybersecurity compliances benefit organizations?

Beyond the legal necessity to secure sensitive data, meeting regulatory compliance standards and criteria provides benefits for businesses. Implementing appropriate safeguards and security measures to protect sensitive customer and employee information strengthens the security posture. Also, intellectual property like trade secrets, software code, and product specifications can be secured as well.

How can organizations start implementing a Cybersecurity Compliance program?

It is critical to first determine the regulations or legislation companies must follow before they can start working towards establishing a compliance program. Some of the ideal steps are as follows: -

A.    Determine the type of data being dealt with and any applicable regulations

Compliance rules differ greatly state-by-state and nation-by-nation. However, a few of them are universal as well. The CCPA (California Consumer Privacy Act) and the NYDFSCR (New York Department of Financial Services Cybersecurity Regulation), for example, set rules that apply to any company set up in any state across the US. Many rules impose extra controls on certain types of personal information. PII (Personally Identifiable Information) refers to any information that may be used to identify a person and is also a crucial data: -

  • Unique Numbers present within National and/or Government-issued IDs
  • First and Last Names
  • Date of Birth and Age
  • Resident and Correspondence Address
  • Mother’s/Father’s Maiden Name

PHI (Personal Health Information) refers to any information that can be used to identify a person with their medical care. The following data is considered as PHI: -

  • Doctors’ and Clinical appointment information
  • Medical history of past and present acute and chronic diseases
  • Admissions records, hospital bills, receipts
  • Prescription records with medicines and dosage
  • Personal and Family Health and Life insurance records

B.    Build a cybersecurity team by appointing a CISO

Any person with the necessary skills and work ethic might be assigned to handle cybersecurity on a part-time basis. To determine what compliance obligations may apply to the business, the CISO may wish to speak with a cybersecurity firm or an attorney. Some jobs that might be used as a dual CISO include: -

  • CTO (Chief Technology Officer)
  • CIO (Chief Information Officer)
  • COO (Chief Operating Officer)
  • IT Manager

C.   Assess the risks and vulnerabilities

Risk and vulnerability assessments are required for almost every significant cybersecurity compliance obligation. These are crucial in assessing the most severe security issues in your firm, as well as the controls you currently have in place. It is also important to consider the likelihood of ransomware attacks while performing vulnerability evaluations.

D.   Tolerance and requirements-based technical controls should be implemented

The next stage should be to start putting technological controls in place depending on your risk tolerance. A cybersecurity framework comes in handy to determine the starting point. Additional technical controls can be configured once the baseline is met.

E.    Policy, procedure, and process controls should be implemented

It is not only about the technology when it comes to cybersecurity compliance. It is also critical to have risk mitigation policies and procedures in place for both compliance and safety. Technical precaution may not prohibit an employee from accidentally downloading malware onto work systems or visiting dangerous websites. Non-technical controls include: -

  • Mandatory end-user and staff security awareness training and security advisories
  • Policies, and procedures that are well documented
  • Processes of security controls and the accountability of the personnel manning them

F.    Continuously test, monitor, revamp and update

Examine any applicable criteria and make sure to test the controls regularly. It is easy to ignore cybersecurity as firms grow and develop, but companies can stay compliant by conducting frequent testing. It is a good idea to test both technological and process controls frequently when new requirements emerge and the old ones have to be revamped.

Protecting critical data is what security is all about and documenting those steps is what compliance is all about. Security personnel cannot establish control efficacy without documentation, even if the systems, networks, and software are protected. The internal or external auditors will have the information they need to verify control if the continuous monitoring & response efforts are documented. Furthermore, the documentation process facilitates discussions with senior management and allows the appropriate personnel to conduct a more thorough assessment of cybersecurity risk.

Centex Technologies helps businesses in understanding & implementing cybersecurity compliance in their organization. To know more about cybersecurity solutions, contact Centex Technologies at Killeen (254) 213 - 4740, Dallas (972) 375 - 9654, Atlanta (404) 994 - 5074, and Austin (512) 956 – 5454.

Be the first to rate this post

  • Currently .0/5 Stars.
  • 1
  • 2
  • 3
  • 4
  • 5

Hardware Firewall Vs Software Firewall

A firewall is a network security mechanism or layer of protection that sits between the internet and computer networks. An internet firewall can be described as a piece of hardware or software that safeguards the computer from unwanted data and viruses.

What is a Hardware Firewall at any NOC (Network Operations Center)?

A hardware firewall is a physical device that filters traffic to a computer, similar to a server. A network cable is generally hooked straight into a computer or server, however, with a hardware firewall, the cable is first plugged into the firewall. The firewall acts as an antivirus solution and a hard barrier against intrusions by sitting between the external network and the server. When put between a modem and wireless router, it helps stop attacks from reaching the devices and appliances.

What is a Software Firewall at any SOC (Security Operations Center)?

A software firewall is a sort of computer program that operates on a computer or server. Its main goal, depending on the software firewall being used, is to safeguard the computer/server from outside efforts to control or acquire access to the system. Any questionable outbound requests can also be checked with a software firewall.

Differentiating Hardware firewalls and Software firewalls based on their advantages

Hardware firewalls let a user use a single physical device to secure the whole network from the outside world. This gadget is connected to the internet through a computer network. A hardware firewall tracks data packets as they go over the network. According to established criteria, the firewall subsequently either blocks or sends the data. Installing dedicated hardware firewalls necessitates significant IT skills, and businesses require dedicated IT staff or department to monitor and manage hardware firewalls. As a result, hardware firewalls are typically used by large businesses or businesses that place a premium on security. Most routers nowadays feature rudimentary firewall functionality, however, these solutions are aimed at home or small business users.

Software firewalls, on the other hand, provide network internal protection. A software firewall is a piece of software that is placed on a single computer and serves to safeguard it. If a business needs to secure many computers, it will need to install the program on each one. A software firewall regulates how certain programs should behave. The administrator can, for instance, restrict access to specific websites or a network printer.

Why do organizations need to deploy both hardware and software firewalls?

A physical firewall protects a network from the outside world, whereas a software firewall protects a specific device from other devices connected to the network systems. If someone tries to access the systems from the outside, the physical firewall will stop them. However, if a user mistakenly opens a virus-infected email that has already entered the system, the software firewall on the workplace network may prevent the virus from infecting other workstations.

In some cases, due to the sensitive data being generated (for example in the healthcare and financial services industries), both firewalls will be used. The PCI DSS also requires both hardware and software firewalls (Payment Card Industry Data Security Standards).

In terms of software, one way to think about it is on a spectrum from ease to security. Hardware firewalls prioritize security over convenience in terms of buying, setup, and application. When used correctly, the two can work together to counteract others’ flaws while promoting their positive qualities.

What about tiny businesses that aren't as concerned about security? It's tempting to go with the simplest firewall to set up but it is important to know that firewalls, both hardware, and software, defend against a variety of dangers. Software firewalls evaluate network traffic that gets past the hardware firewall, whereas hardware firewalls prevent malware from accessing your network. Most IT experts believe that all businesses should use a combination of hardware and software firewalls to improve network security.

Centex Technologies provides cybersecurity solutions to businesses. The team also assists businesses in planning a complete computer network and setting up adequate firewalls. To know more, contact Centex Technologies at Killeen (254) 213 - 4740, Dallas (972) 375 - 9654, Atlanta (404) 994 - 5074, and Austin (512) 956 – 5454.

Be the first to rate this post

  • Currently .0/5 Stars.
  • 1
  • 2
  • 3
  • 4
  • 5

10 Ways To Secure Business Communications In 2022

A growing number of companies are implementing rules that assure greater compliance with government requirements and safe storage of critical company data. Loss of business data may not only result in penalties but also cause loss of reputation, customer trust, & finances.

Following are the most common methods used by businesses to protect corporate communications from cyberattacks:

  • PII (Personally Identifiable Information) data usage and security: A company's corporate data usage policy should explicitly define what constitutes acceptable use of the data. The PII data policies must evidently state whether corporate and/or personal use is permitted, and if yes, then what will be the scope of it. If employees are granted personal use, steps should be taken to outline what types of correspondence will be considered unacceptable or offensive.
  • Installing DLP (Data Loss Prevention) tools to prevent unauthorized transmission of company secrets: Up to 90% of a company's intellectual capital now exists in digital form. It has been estimated that the loss of critical business information via cybersecurity incidents to more than USD 24 Billion per year. It's vital that every employee understands the critical seriousness of transmitting company data. Hence, a deploying DLP solution is beneficial to not just detecting but also preventing the loss of critical and sensitive data via business communications.
  • Complying with business-specific standards and government regulations: The HIPAA (Health Insurance Portability and Accountability Act) and the Gramm-Leach-Bliley Act regulate data privacy. The acts detail specific measures that regulated companies must take to adequately protect customer data. The Securities and Exchange Commission requires organizations to comply with certain privacy and auditing standards, security controls, and mechanisms.
  • Monitoring employees’ behaviors and usage of internet and corporate devices: The company is eventually responsible for any employee’s misuse of corporate devices, assets, and data. Hence it is required to responsibly monitor, review and inspect its employees' communications. The allowed use and acceptable behavior should be articulated in a company’s communications policy, and each employee should be required to sign an agreement for the same.
  • Creating a Cybersecurity program and install security tools to strengthen the security posture: Integrations with applications that can scan messages and attachments are essential. Installation of SOC (Security Operations Center) along with the requisite software solutions is of utmost importance to strengthen the security posture of the organization.
  • Categorizing different types of information and their scope of usage: Filters should be established to look for potentially offensive or defamatory business correspondence. All outbound data transmission should be scanned for project names and other keywords that might indicate that confidential content may be about to leave the organization. Alerts that are flagged by the content filtering tools should be blocked outright or stripped off their attachments.
  • Implementing PoLP (Principle of Least Privilege): Within the company, a completely secure-communications strategy should establish graduated degrees of privilege for users. IT administrators should leverage this categorization to apply contextual logic to groups of content. For example, different types of sensitive corporate content should demand different levels of clearance to be approved for data and information distribution.
  • Deploying an appropriate encryption scheme to protect corporate email data: To safeguard every digital material that is approved for transmission beyond a specific sensitivity threshold, strict criteria should be implemented. Unless linked via a VPN, personnel data related to HR, blueprints, contract agreements, business strategies, and other sensitive information should not be transmitted between individuals in remote locations.
  • Implementing using VPNs (Virtual Private Networks) to facilitate remote working: VPN Policies can be used to establish trusted communication channels between distributed sets of users that eliminate the threat of eavesdropping. Based on the identity of the sender and recipient, policy rules can be created to secure all communications between particular individuals or specific groups of users.
  • Privacy and Security of data-in-transit and data-at-rest: Data policy rules can be set to secure the data stored in servers at the backend as well as the data getting transmitted and exchanged between senders and recipients. Encrypting all communications between certain persons of importance (for example, the CEO and CFO) or groups of users (remote finance departments, legal division and outside law firm, executive management, and R&D, etc.) is of utmost importance.

Securing corporate communications should start with the company's formation. Physical controls must be in place before new gadgets & infrastructure may be incubated. To safeguard company communications, qualified security staff must be employed and trained. 

Centex Technologies provides advanced cybersecurity solutions to businesses. To know more about securing business communications, contact Centex Technologies at Killeen (254) 213 - 4740, Dallas (972) 375 - 9654, Atlanta (404) 994 - 5074, and Austin (512) 956 – 5454.

 

Be the first to rate this post

  • Currently .0/5 Stars.
  • 1
  • 2
  • 3
  • 4
  • 5

Integration Of Cyber Security With Data Science

Data science is a field of study that combines domain expertise, programming, mathematics and statistics to extract meaningful information from data. Cyber security and data science are two rapidly growing fields of computer science. Data science can be integrated with cyber security to develop cybersecurity data science.

The important question that arises is: Why Should Data Science Be integrated With Cyber Security?

Here are some reasons to answer this question:

  • Hackers make use of more sophisticated techniques (including Artificial Intelligence) than ever to perform cyber attacks.
  • Big data regarding cyber security grows and changes at a fast pace.
  • The junk of big data needs to be converted into information for being useful.
  • In order to formulate an effective cyber security protocol, it is important to understand ‘how’ of an attack in addition to ‘what’.

Once the reasons for integrating cyber security with data science are understood, it is required to understand how to integrate cyber security with data science. Easiest way to do so is to make use of data science for three basic tasks:

  • Classification: It is the step of using data science practices for predicting data labels for a set of data being studied.
  • Regression: The goal of regression is to study if different factors effect each other, and if yes, then to what extent. A simple example of integrating data science regression techniques in cyber security is to discover suspicious HTTP requests.
  • Clustering: Clustering techniques attempt at sorting the big data into various groups based on data points that resemble one another. It includes analysis of a new found threat to decide the category it belongs to. A practical example of clustering techniques in cyber security is to identify if user credentials have been stolen.

The next important question that needs to be answered is – What is the benefit of integrating cyber security with data science?

Integration of cyber security with data science helps in tackling cyber threats at a faster pace and with higher efficiency. Here are some benefits of integrated cyber security data science:

  • Data science techniques enable computers to use and adapt various algorithms based on cyber security data they receive, learn from it, and understand the required consequent enhancements.
  • Biometric authentication and user recognition patterns help in reducing the chances of identity theft.
  • Integrating data science helps in detecting and preventing phishing attacks by detecting anomalies in behavior.

For more information on integration of cyber security with data science, contact Centex Technologies at Killeen (254) 213 - 4740, Dallas (972) 375 - 9654, Atlanta (404) 994 - 5074, and Austin (512) 956 – 5454.

Be the first to rate this post

  • Currently .0/5 Stars.
  • 1
  • 2
  • 3
  • 4
  • 5

Security Concerns Associated With Digital Wallets

Digital wallets are virtual wallets that store financial information and identification documents and allow users to conduct online/offline transactions. Depending on the type of digital wallet, it may contain debit, credit, prepaid, and loyalty card data, as well as personal information like a driver's license, health card, and other identification documents. Cyber criminals can make efforts to get access to this information for monetary benefits.  In order to stay protected, it is important to have in-depth knowledge of the prevailing security risks.

Following is a list of some of the well-known security risks associated with digital wallets:

Attempting to tamper with the application connected to the digital wallet

Backdoor in a mobile payment app allows an attacker to steal login credentials and transfer them to a server controlled by the attacker. This may allow attackers to use information in digital wallet for fraudulent activities.

Exploiting the vulnerabilities of the application connected to the digital wallet

Unauthorized access to mobile payment capability might arise as a result of an attack on mobile payment APIs used for in-app purchases. This may allow attackers to carry out fraudulent transactions.

Theft of bank and credit card accounts linked to the mobile payment app can also lead to fraud. A fraudster might potentially take advantage of flaws in the registration process to add a new mobile device to the user profile and use it to make fraudulent transactions.

Malware/rootkits installation

Rootkit is a serious threat vector that may be used to directly monitor and hijack/alter API requests as they are marshaled to and from the API endpoint connected to the digital wallet. Attackers may manipulate variables in transit, such as payment amounts.

Permissions for gaining access to the device operating system

With the approval of the user, an OS may grant access to particular resources. Even if a program isn't malicious, having certain permissions might allow it to access sensitive information which can be utilized by another app to get unauthorised access to information stored in the digital wallet installed on the device.

Verifying identities of users

On a stolen device, if a hacker is able to circumvent biometric authentication, user’s complete financial/ payment information would be compromised and payments can be made. In some cases, users may authorize payments by just inputting the lock screen pattern on a mobile phone. Because this information can be easily accessed by eavesdropping, it might encourage opportunistic attackers to hijack a device and make payments on the victim’s behalf.

Payments that are illegitimate

If the card issuer’s terms and conditions are not followed, the issuer may refuse to take culpability for fraud.

Payment transaction accountability

To make a payment, the providers demand fingerprint authentication. There have been instances where fingerprint authentication has been bypassed or compromised on mobile devices. Also, when several users have access to the device, accountability is compromised and it might be difficult to identify the individual who made the payment.

Stolen equipment has a larger attack surface

If a device connected to a digital wallet is stolen, criminals may be able to acquire access to payment cards.

Phishing and social engineering assaults

As digital wallets become more widely adopted, attackers may be enticed to launch attacks imitating genuine applications to seek credit card details. They may also resort to phishing and social engineering in an attempt to persuade users to provide the information required to carry an attack.

Centex Technologies provides advanced cybersecurity solutions to businesses. For more information, contact Centex Technologies at Killeen (254) 213 - 4740, Dallas (972) 375 - 9654, Atlanta (404) 994 - 5074, and Austin (512) 956 – 5454.

Be the first to rate this post

  • Currently .0/5 Stars.
  • 1
  • 2
  • 3
  • 4
  • 5